VDE-Messgerät SECUTEST-Serie

VDE-Messgerät für elektronische Geräte / rechtssichere Erstellung von Prüfprotokollen / automatische Erkennung von Netzanschlussfehlern / hochauflösendes 4,3 " TFT-Display / stoßsicheres Gehäuse durch integrierten Gummischutz / diverse Schnittstellen

Das VDE-Messgerät wird überall dort eingesetzt wo die Sicherheit elektrischer Geräte gewährleistet sein muss. Diese Sicherheit muss präventiv in gewissen Abständen geprüft werden und dafür eignet sich das VDE-Messgerät bestens. Zum Schutz des Verwenders auf der einen Seite, sowie durch Vorschriften und Gesetze seitens der Behörden, Betreibern und Versicherungen ist die Benutzung von einem VDE-Messgerät essentiell. So muss neben der Prüfung, die in festgelegten Abständen erfolgen muss, ebenfalls eine Prüfung erfolgen, nachdem das Gerät repariert wurde. Durch acht voreineingestellte Prüfabläufe nach Norm können Standardprüfaufgaben mit dem VDE-Messgerät durchgeführt werden. Zusätzlich dazu hält das VDE-Messgerät einen frei konfigurierbaren Prüfablauf für spezielle Prüfaufgaben bereit. Durch Direktwahltasten, Softkeys und einen Doppel-Drehschalter wird eine einfache und komfortable Bedienung ermöglicht. Dazu trägt ebenfalls die Prüflingsanschluss- und Schutzklassenerkennung durch das VDE-Messgerät bei. Die Messung von Ableitströmen misst das VDE-Messgerät zuverlässig bis zu einer Bandbreite von 1 MHz. Durch modernste Multikanalmesstechnik bietet das VDE-Messgerät die Möglichkeit Messwerte schnell zu erfassen. Dabei unterstützen 16 Kanäle, die parallel zur Verfügung stehen, eine zeitgleiche Messung. Die Datenspeicherung erfolgt als Einzelwertmessung oder als Prüfablaufsmessung, bei denen bis zu 50000 Messwerte gespeichert werden können. Diese Messwerte können als komplette Datenbank über die USB-Schnittstellen leicht exportiert werden und dann in einer Tabellenkalkulation eingesehen werden. Alternativ dazu steht die zu dem VDE-Messgerät passende Software kostenlos im Internet als Download bereit. Die bereits angesprochenen USB-Schnittstellen bieten neben dem Datenexport die Möglichkeit ebenfalls einen Barcodescanner oder eine externe Tastatur anzuschließen. Sollten Sie weitere Fragen zum VDE-Messgerät haben, schauen Sie auf die folgenden technischen Daten oder nutzen Sie unser Kontaktformular oder rufen Sie uns an: 02903 976 99 0. Unsere Techniker und Ingenieure beraten Sie sehr gerne bezugnehmend auf das VDE-Messgerät oder allen anderen Produkten auf dem Gebiet der Regeltechnik, der Messgeräte oder der Waagen der PCE Deutschland GmbH.

PREISE

- Datenspeicher für bis zu 50000 Datensätze
- Doppel-Dreh-Schalter, Direktwahltasten
- hochauflösendes, brillantes 4,3 " TFT-Display
- für den internationalen Einsatz
- rechtssichere Erstellung von Prüfprotokollen
- autom. Erkennung von Netzanschlussfehlern
- Prüflingsanschlusserkennung
- Schutzklassenerkennung
- stoßsicheres Gehäuse (integr. Gummischutz)
- diverse Schnittstellen

Schaltermessung Messvariante Messfunktionen Prüfstrom / Prüfspannung

Einzelmessungen Schalterstellungen Drehschalterebene grün Messungen an spannungsfreien Prüflingen

Schutzleiterwiderstand

Schutzleiterstrom (200 mA) R_{PE} SECUTEST Base10/XTRA: 10

Α*

Isolationswiderstand SK I R_{ISO} SK II Prüfspannung

Messungen an Prüflingen unter Netzspannung

 I_B

 I_A

U

ta

Ρ

Schutzleiterstrom Effektivwert DIR

Wechselstromanteil DIF I_{PE} Gleichstromanteil **ALT**

Prüfspannung

Berührungsstrom Effektivwert DIR

Wechselstromanteil DIF Gleichstromanteil ALT

Prüfspannung

Geräteableitstrom Effektivwert

DIR Wechselstromanteil DIF I_{G} Gleichstromanteil **ALT**

Prüfspannung Ableitstrom vom DIR Anwendungsteil ALT

Prüfspannung

Patientenableitstrom

Effektivwert

Wechselstromanteil DIR mit Sonde I_P

> Gleichstromanteil Prüfspannung

Sondenspannung effektiv Wechselspannungsanteil Gleichspannungsanteil

PRCD-Auslösezeit für 30 mA-

PRCDs

Netzspannung an der Prüfdose Funktionstest an der Prüfdose Strom zwischen L und N Spannung zwischen L und N

Frequenz

Wirkleistung Scheinleistung

Leistungsfaktor

Sondermessfunktionen

Verlängerungsleitungsprüfung EL1

mit Adapter EL1:

Durchgang, Kurzschluss,

PCE Deutschland GmbH | Im Langel 4 | 59872 Meschede | Deutschland Tel: 02903 / 976 99-0 | Fax: +49 (0) 2903 / 976 99 29 | E-Mail: info@warensortiment.de <u>www.warensortiment.de</u> | <u>www.pce-instruments.com/deutsch/</u>

EXTRA

Polarität (Aderntausch)
Reserviert für Erweiterungen im Rahmen von SoftwareAktualisierungen

Legende

DIR = Direktmessung, DIF = Differenzstrommessung, ALT = alternative Messung (Ersatzableitstrommessung)

Automatische Prüfabläufe Schalterstellungen Drehschalterebene orange Fest eingestellte Prüfabläufe

A1	VDE 0701-0702 Messart passiv, Prüfdose
A2	VDE 0701-0702 Messart aktiv, Prüfdose
A3	VDE 0701-0702 Parametrierung für EDV (aktiv)
A4	EN 62353 (VDE 0751), Messart passiv
A5	EN 62353 (VDE 0751), Messart aktiv
A6	EN 60974-4, Anschlussart Prüfdose
A7	EN 60974-4, Anschlussart AT16-DI/AT32-DI
A8	Verlängerungsleitung (RPE, RISO), Messart passiv, Adapter EL1

Frei einstellbare Prüfabläufe

AUTO Norm, Anschlussart,
Messart jeweils frei wählbar

 * 10 A-R $_{\rm PE}$ Messungen sind nur bei Netzspannungen von 115 V / 230 V und Netzfrequenzen von 50 Hz / 60 Hz möglich.

Prüfungen 62638 (DIN VDE 0701-0702) / IEC 62353 (VDE 0751)

Messgröße	Messbereich / Nenn- gebrauchsbereich	Auflösung	Betriebs - Messunsicherheit 1)
Schutzleiterwiderstand R_{PE}	000 999 Ω 1,0 9,99 Ω 10,0 30,0 Ω	1 m Ω 10 m Ω 100 m Ω	(±5 % v.M. +10 D) <10 D
Isolationswiderstand	10 999 kΩ 1,00 9,99 MΩ	1 kΩ 10 kΩ	(±5 % v.M. +4 D) <10 D
R _{ISO}	10,0 99,9 MΩ 100 300 MΩ	100 kΩ 1 MΩ	≥20 MΩ: ±(10 % v.M. +8 D)
Ableitströme Alternative Messung I _{PE} , I _B , I _G , I _A ²⁾	0,0 99 μA 100 999 μA 1,00 9,99 mA 10 30,0 mA	1 μΑ 1 μΑ 10 μΑ 100 μΑ	±(5 % v.M. +4 D)>10 D >15 mA: ±(10 % v.M. +8 D)
Ableitströme Direktmessung I _{PE} , I _B , I _G , I _A , I _P ³⁾	nur IP: 0,0 99,9 μA 0,0 99 μA 100 999 μA 1,00 9,99 mA 10,0 30,0 mA	100 μA 1 μA 1 μA 10 μA 100 μA	±(5 % v.M.+4 D) >10 D
Ableitströme Differenzstommessung I _{PE} , I _B , I _G ⁴⁾	0 99 μA 100 999 μA 1,00 9,99 mA 10,0 30,00 mA	1 μA 1 μA 10 μA 100 μA	±(5 % v.M.+4 D) >10 D

Funktionstest

Messgröße	Messbereich / Nenn- gebrauchsbereich	Auflösung	Betriebs - Messunsicherheit 1)
Netzspannung U _{L-N}	100,0 240,0 V~	0,1 V	-
Verbraucherstrom I_V	0 16,0 A _{RMS}	10 mA	-
Wirkleistung P	0 3700 W	1 W	-
Scheinleistung S	0 4000 VA	1 VA	Rechenwert $U_{L-N} \cdot I_V$
Leistungsfaktor LF bei Sinusform: cosφ	0,00 1,00	0,01	Rechenwert P / S, Anzeige >10 W
U_{Sonde}			
Messgröße	Messbereich / Nenn- gebrauchsbereich	Auflösung	Betriebs - Messunsicherheit 1)
Sondenspannung	0,0 99,9 V	100 mV	-
(Phasensuche)	100 300 V	1 V	±5 ms

$T_{A\,PRCD}$

MessgrößeMessbereich / Nenn-
gebrauchsbereichAuflösungBetriebs -
MessunsicherheitAuslösezeit @ 30 mA0,1 ... 999 ms0,1 ms±5 ms

Legende

M = Messwert

D = Digit

Einflussgrößen und Einflusseffekte

Einflussgröße/Einflussbereich	Bezeichnung gemäß DIN VDE 0404	Einflusseffekte $\pm \%$ v. Messwert
Veränderung der Lage	E1	-
Veränderung der Versorgungsspannung der Prüfrichtung	E2	2,5
Temperaturschwankung	E3	angegebene Einflusseffekte gelten pro 10 K Temperaturänderung:
0 +40 °C		2,5
Höhe des Prüflingsstroms	E4	2,5
Niederfrequente Magnetfelder	E5	2,5
Impedanz des Prüflings	E6	2,5
Kapazität bei Isolationsmessungen	E7	2,5
Kurvenstrom des gemessenen Stroms		
49 51 Hz	E8	2 bei kapazitiver Last (bei Ersatz-Ableitstrom)
45 100 Hz		1 (bei Berührungsstrom)
		2,5 alle anderen Messbereiche

Referenzbereiche

Netzspannung	230 V AC ±0,2 %
Netzfrequenz	50 Hz ±2 Hz
Kurvenform	Sinus (Abweichung zwischen Effektiv- und Gleichrichtwert < 5 %)
Umgebungstemperatur	+23 °C ±2 K
Relative Luftfeuchte	40 60 %
Lastwiderstände	linear

¹⁾ Angaben gelten nur für die Anzeige am Prüfgerät. Daten, die über die USB-Schnittstelle übertragen werden, können hiervon abweichen

²⁾ aus früheren Normen bekannt als Ersatzableitstrom bzw. Ersatzpatientenableitstrom

³⁾ Schutzleiterstrom, Berührungsstrom, Geräteableitstrom, Patientenableitstrom

⁴⁾ Schutzleiterstrom, Berührungsstrom, Geräteableitstrom

Nenngebrauchsbereiche

Netznennspannung 100 ... 240 V AC

Netznennfrequenz 50 ... 400 Hz

Kurvenform der Netzspannung Sinus

Temperatur 0 ... +50 °C

Umgebungsbedingungen

Lagertemperatur - 20 ... + 60 °C

Arbeitstemperatur - 5 ... + 40 °C

Genauigkeitsbereich 0 ... + 40 °C

Relative Luftfeuchte max. 75 % r.F, Betauung ist auszuschließen

Höhe über NN max. 2000 m

Einsatzort in Innenräumen; außerhalb: nur innerhalb der

angegebenen Umgebungsbedingungen

Stromversorgung

Netzspannung 100 ... 240 V AC

Netzfrequenz 50 ... 400 Hz

Leistungsaufnahme 200 mA-Prüfung: ca. 32 VA

10 A-Prüfung: ca. 105 VA

Leistungsaufnahme bei Funktionstest dauernd maximal 3600 VA, Leistung wird nur

durch das Prüfgerät geführt,

Schaltvermögen ≤16 A, ohmsche Last

Elektrische Sicherheit

Schutzklasse I nach IEC 61010-1 / EN 61010-1 / VDE 0411-1

Nennspannung 230 V

Prüfspannung 2,3 kV AC 50 Hz oder 3,3 kV DC (Netzkreis /

Prüfdose gegen PE-Netzanschluss, USB,

Fingerkontakt, Sonde, Prüfdose)

Messkategorie 250 V CAT II

Verschmutzungsgrad 2

Sicherheitsabschaltung bei Differenzstrom des Prüflings >10 mA,

Abschaltzeit <100 ms, umschaltbar auf >30 mA

bei Sondenstrom während:

- Ableitstrommessung >10 mA ~/<5 m/s

- Schutzleiterwiderstandsmessung: >250

mA~/<1 ms

Schmelzsicherungen Netzsicherungen: 2 x 500 V/16 A FF

Sondensicherung: 250 V/250 mA

SECUTEST BASE 10: zusätzlich 1 x 500 V/16 A

FF

Elektromagnetische Verträglichkeit von dem VDE-Messgerät

Störaussendung	Klasse
EN 55011	В

Störfestigkeit	Prüfwert	Bewertungskriterium
EN 61000-4-2	Kontakt / Luft - 4 kV / 8 kV	Α
EN 61000-4-3	3 V/m bzw. 1 V/m	Α
EN 61000-4-4	1 kV	В
EN 61000-4-5	1 kV bzw. 2 kV	Α
EN 61000-4-6	3 V/m	Α
EN 61000-4-11	0,5 / 1 / 25 Perioden	Α
	250 Perioden	С

Datenschnittstelle USB

Тур USB-Slave für PC-Anbindung

Тур 2 x USB-Master, für externe Tastatur,

Barcodeleser, USB-Stick (zur Datensicherung)

und Drucker

Mechanischer Aufbau

4,3 " Mehrfachanzeige (9,7 x 5,5 cm), Anzeige

hinterleuchtet.

480 x 272 Punkte, bei 24 Bit Farbtiefe

295 x 145 x 150 mm (B x H x T) Abmessungen

Höhe mit Griff: 170 mm

Gewicht ca. 2,5 kg

Schutzart Gehäuse: IP 40

Prüfdose: IP 20 nach DIN VDE 0470 Teil 1 /

EN 60529

Vorschriften von Normen nach denen das VDE-Messgerät gebaut und geprüft wurde

IEC/EN 61010-1:2010 Sicherheitsbestimmungen für elektrische Mess-, VDE 0411-1:2011 Steuer-, Regel- und Laborgeräte - Allgemeine

Anforderungen

DIN VDE 0404 Teil 1: 2002 Prüf- und Messeinrichtungen zum Prüfen der

elektrischen Sicherheit von elektrischen Geräten - Allgemeine Festlegungen

DIN VDE 0404 Teil 2: 2002 - Prüfeinrichtungen für Prüfungen nach

Instandsetzung, Änderung oder Wiederholungsprüfungen

- Prüfeinrichtungen für Wiederholungsprüfungen DIN VDE 0404 Teil 3: 2005

> und Prüfungen vor der Inbetriebnahme von medizinischen elektrischen Geräten oder

Systemen

DIN EN 60529 / Prüfgeräte und Prüfverfahren

VDE 0470 Teil 1

DIN EN 61326-1

Schutzarten durch Gehäuse (IP-Code) Elektr. Mess-, Steuer-, Regel- und Laborgeräte PCE Deutschland GmbH | Im Langel 4 | 59872 Meschede | Deutschland Tel: 02903 / 976 99-0 | Fax: +49 (0) 2903 / 976 99 29 | E-Mail: info@warensortiment.de <u>www.warensortiment.de</u> | <u>www.pce-instruments.com/deutsch/</u>

EMV-Anforderungen - Teil 1: Allg. Anforderungen

An der Rückseite von dem VDE-Messgerät der SECUTEST sind die USB-Anschlüsse angebracht.

Ausstattungsvarianten von dem VDE-Messgerät

SECUTEST BASE

SECUTEST BASE 10

SECUTEST XTRA

Lieferumfang von dem VDE-Messgerät der SECUTEST-Serie

- 1 x VDE-Messgerät SECUTEST BASE, BASE 10 oder XTRA, 1 x Netzanschlussleitung,
- 1 x Prüfsonde (2 m ungewendelt), 1 x USB-Kabel (USB A auf USB B, Länge 1,5 m),
- 1 x aufsteckbare Krokodilklemme, 1 x Werkskalibrierschein, 1 x Kurzanleitung

additionales Zubehör zu dem VDE-Messgerät

Barcodeleser: Der Barcodeleser verfügt über einen USB-Stecker, mit dem das VDE-Messgerät verbunden werden kann. Somit wird es ermöglicht, dass Barcodes einfach eingelesen werden können. Das bedeutet, dass die Identnummer von Prüflingen komfortabel in Einzelmessungen und Prüfabläufe übernommen werden kann. Der Barcodeleser arbeitet nach dem Konzept des instinktiven Leseabstandes und bietet somit beste Leistungen bei Kontakten bis 20 cm Abstand.

Thermodrucker: Der Thermodrucker bietet einen USB-Stecker, der mit dem VDE-Messgerät verbunden werden kann, damit die Möglichkeit besteht einen Ausdruck von Prüfprotokollen zu

PCE Deutschland GmbH| Im Langel 4|59872 Meschede | Deutschland Tel: 02903 / 976 99-0| Fax: +49 (0) 2903 / 976 99 29| E-Mail: info@warensortiment.de www.warensortiment.de | www.pce-instruments.com/deutsch/

erstellen.

Adapter zur Prüfung von einphasigen Verlängerungsleitungen

CEE-Adapter zur Prüfung an ein- und dreiphasigen Elektrogeräten: Adapter für eine schnelle und rationelle Prüfung von den Geräten, die mit einem CEE-Stecker ausgestattet sind. Dabei verfügt der Adapter über folgende Einbausteckdosen: 5-polig 16 A, 5-polig 32 A und 3-polig 16 A. Zusätzlich dazu sind fünf 4 mm Sicherheitsbuchsen vorhanden, an die Drehstromgeräte ohne fest angeschlossenen Stecker z.B. mittels Schnellspannklemmen (nicht im Lieferumfang enthalten) oder herkömmlichen Messleitungen angeschlossen werden können.

Folgende Prüfungen können mit dem CEE-Adapter durchgeführt werden:

- Prüfung der Durchgängigkeit des Schutzleitersystems
- Isolationswiderstand, alternativer Ableitstrom (Ersatzableitstrom)
- Funktionsprüfung (nur 3-polige CEE-Steckdose)

3-Phasen 16 A Differenzstromadapter: Adapter zur schnellen und rationellen Prüfung von Geräten mit einem 5-poligem CEE-Stecker 16 A / 6 h ausgestattet sind.

Folgende Prüfungen können mit dem CEE-Adapter durchgeführt werden:

- Prüfung der Durchgängigkeit des Schutzleitersystems
- Isolationswiderstand, alternativer Ableitstrom (Ersatzableitstrom)
- Durchführen der Funktionsprüfung

Das 3-Phasen 16 A Differenzstromadapter gibt es auch in der Ausführung mit einem 5-poligen CEE-Stecker 32 A / 6 h als CEE-Adapter AT32-DI.

Kalibrieradapter: Zur Überprüfung von Prüfgeräten nach DIN VDE 0701-0702 / IEC 62353 (VDE 0751) auf deren Messunsicherheit. Gemäß den Vorgaben der Unfallverhütung BGV A3 (früher VGB 4) und bei einer Zertifizierung nach Qualitätsstandard ISO 9000 sind diese Prüfgeräte in der Regel ein Mal pro Jahr zu überprüfen. Dies gilt bei allen Grenzwerten für die geforderten Prüfungen nach DIN / VDE.

ISO Kalibrierschein CAL-SEC:

Laborkalibrierung und Zertifizierung inklusive Prüfzertifikat für das VDE Messgerät Secutest (entweder bei Erstbestellung eines Gerätes oder

zur Rekalibrierung (z.B. jährlich, je nach betriebsinternem ISO-Handbuch)) zur Erfüllung der ISO-Normen beim Prüfmitteleinsatz.

Hier sehen Sie weitere ähnliche Produkte zum Begriff: "VDE-Messgerät":

- VDE-Tester Safetytest 1L

(Messgerät zur Überprüfung der elektrischen Sicherheit nach VDE 0701/0702)

- VDE-Tester Safetytest 1N

(schnelle Prüfung nach VDE 0701/0702, int. Protokoll-Speicher für 16000 Protokolle)

Hier finden Sie die komplette Übersicht über alle Messgeräte des Angebotes von PCE Instruments.