

Inhalt

1. Verwendungszweck	4
2. Funktionsweise	4
2.1. Schwingungssensor	4
2.2. Messgerät	5
3. Messbereiche	5
3.1. Messbare Schwinggrößen	5
3.2. Schwingbeschleunigung	6
3.3. Schwinggeschwindigkeit	6
3.4. Schwingweg	8
3.5. Wälzlagerkennwert K(t)	9
3.6. Drehzahl	10
3.7. Temperatur	10
4. Batterien	10
4.1. Batterien einlegen	10
4.2. Ein- und Ausschalten	11
4.3. Batterieanzeige und Batterietyp	12
4.4. Selbstabschaltung	12
5. Vorbereitung von Messpunkten	13
5.1. Allgemeines zur Auswahl von Messpunkten	13
5.2. Empfehlungen nach DIN/ISO 10816-1	13
5.3. VMID-Messpunkte	15
5.3.1. Funktionsweise der VMID-Messpunkte	
5.3.2. Montage der VMID-Messpunkte	15
6. Messung.	
6.1. Messwertanzeige	16
6.2. Wahl der Anzeigegröße	16
6.3. Messstellenerkennung	17
6.3.2. Eingabe von Messpunkttext.	
6.3.3. Bearbeiten und Löschen von Messpunktdaten	19
6.4. Speichern von Messwerten	20
6.5. Grafische Trendanzeige	20
6.6. Anzeige von gespeicherten Messwerten	21
6.7. Löschen gespeicherter Messdaten	22
6.8. K(t)-Messung	22
6.9. Frequenzanalyse	25
6.10. Drehzahlmessung	26

6.11. Temperaturmessung	27
7. Auswertung der Messungen mit Normwerten	28
8. Einstellung von Datum und Uhrzeit	31
9. Kalibrierung	32
10. Sensorkontrolle	34
11. Kopfhöreranschluss	34
12. Reset-Taste	36
13. Verbindung mit dem PC	36
14. Technische Daten	39
Anlagen: Garantie	

CE-Konformitätserklärung

Bild 1: PCE-VM 25 mit Schwingungssensor

Vielen Dank, dass Sie sich für ein Schwingungsmessgerät der Firma REG'Kpu0 entschieden haben!

1. Verwendungszweck

Das PCE-VM 25 wurde insbesondere für die Messung und Überwachung von Schwingungen an rotierenden Maschinen entwickelt. Zweck solcher Messungen ist die Zustandsüberwachung zur Vermeidung ungeplanter Ausfälle. Weiterhin werden Schwingungsmessungen vor der Auslieferung neuer Maschinen und nach Reparaturen im Hinblick auf Qualitätssicherung und Gewährleistung durchgeführt.

Basis für eine erfolgreiche Maschinenzustandsüberwachung ist die Messung des Trends der Schwingstärke über einen längeren Zeitraum. Dazu werden in regelmäßigen Zeitintervallen Messungen durchgeführt und gespeichert.

Das PCE-VM 25 misst und archiviert die Schwingbeschleunigung, die Schwinggeschwindigkeit oder den Schwingweg. Es entspricht in seiner Spezifikation den Festlegungen für Schwingstärkemessgeräte nach ISO 2954 und eignet sich damit u.a. für die Messung von Maschinenschwingungen nach ISO 10816.

Neben den Schwinggrößen misst das PCE-VM 25 auch berührungslos die Temperatur und die Drehzahl.

Als Schwingungssensor dient ein externer piezoelektrischer Beschleunigungsaufnehmer, welcher im Lieferumfang enthalten ist. Das PCE-VM 25 ist mit einer elektronischen Messstellenerkennung ausgestattet, die es auf sehr effektive Weise erlaubt, routinemäßige Messungen an einer großen Zahl von Messpunkten durchzuführen. Für die Übertragung der Messdaten auf den PC bietet REG"Kout0eine Software an.

Das PCE-VM 25 entspricht in der gebräuchlichen Hierarchie der Zustandsüberwachung dem "Level 1". Dieser steht für die Langzeitüberwachung von Kennwerten mit geringem technischen und personellen Aufwand.

Zur Fehlerlokalisierung ("Level 2") werden darauf aufbauend spektrale Diagnosemessungen durchgeführt, die ein höheres Maß an Fachkenntnis und aufwändigere Messtechnik bedingen.

Bei der Entwicklung des PCE-VM 25 wurde Wert auf einfachste Bedienung gelegt, so dass das Gerät auch von angelerntem Personal ohne besondere Qualifikation eingesetzt werden kann.

2. Funktionsweise

2.1. Schwingungssensor

Das PCE-VM 25 arbeitet mit einem piezokeramischen Scher-Beschleunigungsaufnehmer. Piezoelektrische Schwingungsaufnehmer zeichnen sich durch hohe Präzision und Auflösung bei großer Robustheit aus. Der Beschleunigungsaufnehmer des PCE-VM 25 ist mit integrierter Elektronik zur Impedanzwandlung nach dem IEPE-Standard ausgestattet. Im Sensorfuß ist ein Magnet zur Ankopplung am Messpunkt integriert. In der Mitte des Magneten befindet sich ein Kontakt zum Lesen der digitalen Messstellenkennung. Die Messstellenkennung ist in den optional erhältlichen VMID-Messpunkten gespeichert.

Zum Schutz der Koppelfläche dient eine Metallkappe, die durch den Magnetfuß auf dem Sensor hält.

2.2. Messgerät

Bild 2: Blockschaltung

Bild 2 zeigt das Blockschaltbild. Das PCE-VM 25 versorgt den IEPE-Sensor mit 2 mA Konstantstrom. Über dem Sensorausgang liegt eine zur gemessenen Schwingbeschleunigung proportionale Wechselspannung, welche im Gerät so verstärkt wird, dass die Aussteuerung optimal ist. Die Verstärkungsumschaltung erfolgt automatisch. Der nachfolgende Analog- / Digitalwandler ist ein Sigma-Delta-Wandler mit 24 Bit Auflösung.

Die weitere Signalverarbeitung, wie Filterung, Integration (zur Berechnung von Geschwindigkeit und Weg aus der Beschleunigung) sowie Effektiv- und Spitzenwertbildung erfolgt softwaretechnisch im Mikrocontroller. Dieser sorgt weiterhin für den Betrieb von Grafikdisplay, Infrarotthermometer und Drehzahlsensor sowie für die USB-Kommunikation und für die Speicherung von Messwerten.

3. Messbereiche

3.1. Messbare Schwinggrößen

Das PCE-VM 25 kann die Schwinggrößen Beschleunigung, Geschwindigkeit und Weg anzeigen. Geschwindigkeit und Weg werden durch einfache bzw. doppelte Integration aus dem Beschleunigungssignal des Sensors gebildet.

Weiterhin sind unterschiedliche Frequenzbereiche wählbar.

Die Anzeigerate unterscheidet sich je nach gewählter Größe, um zu gewährleisten, dass der Effektivwert auch bei tiefen Frequenzen nicht schwankt. Die folgende Tabelle zeigt die Anzeigeraten.

Messgröße	Frequenzbereich	Anzeigerate
Schwingbeschleunigung	0,2 Hz – 10 kHz	5,6 s
Schwingbeschleunigung	3 Hz – 1 kHz	1,4 s
Schwingbeschleunigung, K(t)	1 kHz – 10 kHz	1,4 s
Schwinggeschwindigkeit	2 Hz – 300 Hz	2,8 s
Schwinggeschwindigkeit	10 Hz – 1 kHz	1,4 s
Schwingweg	5 Hz – 200 Hz	2,8 s

3.2. Schwingbeschleunigung

Das PCE-VM 25 besitzt folgende Frequenzbereiche für Schwingbeschleunigung:

- 0,2 Hz bis 10 kHz: volle Frequenzbandbreite des Beschleunigungsaufnehmers
- 3 Hz bis 1 kHz: niederfrequente Beschleunigung
- 1 kHz bis 10 kHz: nur hohe Schwingfrequenzen

Damit lassen sich bestimmte Signalanteile selektieren und andere unterdrücken. Bei Messungen an Maschinen lässt sich zum Beispiel im Frequenzbereich von 1 kHz bis 10 kHz vorwiegend das Laufgeräusch von Wälzlagern betrachten, während Unwuchtvibrationen unterdrückt werden.

Bild 3: Frequenzgänge für Schwingbeschleunigung

3.3. Schwinggeschwindigkeit

Die Messung der Schwinggeschwindigkeit ist ein übliches Verfahren zur Beurteilung der Laufruhe rotierender Maschinen. Die Schwinggeschwindigkeit, häufig auch Schwingstärke genannt, repräsentiert den Energiegehalt der auftretenden Vibrationen. Vibrationen werden durch rotierende Unwuchten verursacht, zum Beispiel infolge loser Schrauben, verbogener Teile, verschlissener Lager mit großem Spiel oder Ablagerungen auf Lüfterflügeln. Oft verstärken sich auch mehrere Effekte gegenseitig.

Die Anforderungen an Schwingstärkemessgeräte für Messungen an rotierenden Maschinen sind in ISO 2954 beschrieben. Dort wird ein Bandfilter für die Schwinggeschwindigkeit von 10 bis 1000 Hz definiert. Der Anzeigewert der Schwingstärke ist der echte Effektivwert.

Neben dem Frequenzbereich 10 bis 1000 Hz besitzt das PCE-VM 25 für Schwingstärkemessungen einen weiteren Frequenzbereich von 2 bis 300 Hz. Dieser eignet sich für Messungen an langsam laufenden Maschinen mit Nenndrehzahlen unter 120 min⁻¹ und an Hubkolbenmaschinen nach ISO 10816-6.

Die entsprechende Frequenzgangkurve des PCE-VM 25 sehen Sie in Bild 4.

Bild 4: Frequenzgänge für Schwinggeschwindigkeit

Die Schwinggeschwindigkeit wird aus der vom Sensor gemessenen Schwingbeschleunigung durch Integration gebildet. Für sinusförmige Signale besteht folgender Zusammenhang:

$$v = \frac{a}{2 \prod f}$$

Es ist ersichtlich, dass bei gleichbleibender Beschleunigung (a) der Wert der Geschwindigkeit (v) mit steigender Frequenz (f) fällt. Dies hat zur Folge, dass die Messbereichsgrenzen bei der Geschwindigkeitsmessung frequenzabhängig sind (Bild 5).

Bild 5: Messbereichsgrenzen für den Effektivwert der Schwinggeschwindigkeit

Die mit dem PCE-VM 25 maximal messbare Geschwindigkeit liegt bei etwa 1000 mm/s (Effektivwert). Es ergibt sich ein frequenzunabhängiger Aussteuerbereich bis etwa 40 Hz. Bei höheren Frequenzen werden die Messbereichsgrenzen für Beschleunigung wirksam, die bei ca. 240 m/s² (Effektivwert) liegen. Im Grenzbereich der Tiefpassfilter wird die Aussteuerbarkeit zusätzlich eingeschränkt.

3.4. Schwingweg

Der Schwingweg oder die Auslenkung der Schwingung ist die ist die am einfachsten vorstellbare Schwinggröße. Sie wird durch doppelte Integration der Schwingbeschleunigung gebildet. Gegenüber der Geschwindigkeit ist der praktisch nutzbare Frequenzbereich noch stärker eingeschränkt. Einerseits ist ein Hochpassfilter erforderlich, um tieffrequente Störsignale zu unterdrücken, die sonst, durch die Doppelintegration verstärkt, im Wegmesswert erscheinen würden. Andererseits werden bereits Frequenzen im Bereich weniger hundert Hertz so stark bedämpft, dass kein auswertbarer Anzeigewert mehr zustande kommt.

Aufgrund dieser Einschränkungen sollte die Wegmessung nur angewendet werden, wenn Beschleunigung oder Geschwindigkeit nicht die gewünschte Aussage liefern.

Das PCE-VM 25 misst den Schwingweg von 5 bis 200 Hz. Bild 6 zeigt das Frequenzgangdiagramm. Die Kurve endet bei 200 Hz, weil darüber selbst bei Vollaussteuerung des Sensors nur noch einstellige Wegmesswerte anfallen.

Bild 6: Frequenzgang für Schwingweg

Für sinusförmige Signale besteht bei Doppelintegration folgender Zusammenhang:

$$d = \frac{a}{(2 \Pi f)^2}$$

Es ist erkennbar, dass bei gleichbleibender Beschleunigung (a) der Wert des Weges (d) mit steigender Frequenz (f) quadratisch fällt. Dies hat zur Folge, dass die Messbereichsgrenzen bei der Wegmessung stark frequenzabhängig sind. Bild 7 zeigt die Messbereichsgrenzen in Abhängigkeit von der Frequenz.

Bild 7: Messbereichsgrenzen für den Effektivwert des Schwingwegs

Der mit dem PCE-VM 25 maximal messbare Weg liegt bei etwa 60 mm (Effektivwert). Es ergibt sich ein frequenzunabhängiger Aussteuerbereich bis etwa 10 Hz. Bei höheren Frequenzen werden die Messbereichsgrenzen für Beschleunigung wirksam, die bei ca. 240 m/s² (Effektivwert) liegen.

3.5. Wälzlagerkennwert K(t)

Der Wälzlagerkennwert bzw. die Diagnosekennzahl nach Sturm K(t), wie er u.a. in VDI 3832 beschrieben wird, ist eine bewährte Kenngröße zur Zustandsbeurteilung von Wälzlagern. Er wird aus den Effektiv- und Spitzenwerten der Schwingbeschleunigung im Frequenzbereich von 1 bis 10 kHz gebildet. Durch das 1 kHz-Hochpassfilter wird gewährleistet, dass wälzlagerfremde Körperschallanteile, zum Beispiel durch Unwuchten, das Wälzlagersignal nicht überdecken.

Der K(t)-Wert setzt die aktuell gemessenen Effektiv- und Spitzenwerte mit den Effektiv- und Spitzenwerten zu einem Startzeitpunkt ins Verhältnis.

$$K(t) = \frac{a_{rms}(0) \cdot a_{pk}(0)}{a_{rms}(t) \cdot a_{pk}(t)}$$

Darin sind:

a_{rms}(0) Effektivwert zum Start- bzw. Referenzzeitpunkt

- a_{pk}(0) Betragsmaximalwert (Spitzenwert) zum Start- bzw. Referenzzeitpunkt
- a_{rms}(t) aktueller Effektivwert

a_{pk}(t) aktueller Betragsmaximalwert (Spitzenwert)

Der Start- oder Referenzzeitpunkt liegt nach Inbetriebnahme des Lagers, idealerweisen anch Verstreichen einer gewissen Einlaufzeit. Zu diesem Zeitpunkt ist der K(t)-Wert gleich 1. Mit fortschreitender Abnutzung, d.h. Laufbahnschädigung, sinkt der

K(t)-Wert. Während der Einlaufzeit kann er auch geringfügig steigen. Damit erlaubt der K(t)-Wert die Klassifizierung des Wälzlagerzustands:

K(t)	Wälzlagerzustand
> 1	Verbesserung
10,5	Guter Zustand
0,5 0,2	Schädigungsbeschleunigende Einflüsse
0,2 0,02	Fortschreitender Schädigungsprozess
< 0,02	Schädigung

Die Multiplikation von Effektivwert und Spitzenwert signalisiert im Zeitverlauf der Beschleunigung sowohl Veränderungen durch Stoßanregung bei lokalen Schäden (Pitting) als auch einen allgemeinen Anstieg des Körperschalls bei verteilten Schäden (Laufbahnabschälung, Korrosion, Laufkörperverschleiß) sowie Mangelschmierung.

Der K(t)-Wert liefert nur bei Trendbetrachtung eine Aussage über den Wälzlagerzustand. Eine einzelne Messung erlaubt noch keine Diagnoseaussage.

Der K(t)-Wert ist stark drehzahlabhängig. Bei der Trendbeobachtung ist daher auf gleichbleibende Drehzahlen zu achten.

3.6. Drehzahl

Neben den Schwinggrößen misst das PCE-VM 25 mit Hilfe eines eingebauten berührungslosen Optosensors die Drehzahl (Bild 34 auf Seite 27). Dazu muss das Gerät auf das rotierende Teil ausgerichtet werden, wobei ein Laserpointer als Positionierhilfe dient.

Hinweis: Bitte verdecken Sie nicht die Sensoröffnungen auf der Geräterückseite mit den Fingern, während Sie messen.

3.7. Temperatur

Das PCE-VM 25 besitzt ein eingebautes Infrarotthermometer zur berührungslosen Temperaturmessung (Bild 34 auf Seite 27).

4. Batterien

4.1. Batterien einlegen

Das PCE-VM 25 wird aus drei Alkaline-Standardzellen vom Typ AAA (LR03) versorgt. Auch NiMH-Akkus (HR03) sind einsetzbar. Die geringe Mindestversorgungsspannung des PCE-VM 25 erlaubt eine optimale Ausnutzung der Batterien.

Achtung: Bitte schalten Sie das Gerät vor dem Batteriewechsel aus. Der Speicherinhalt wird im ausgeschalteten Zustand einige Minuten auch ohne Batterien gehalten und die interne Uhr läuft weiter. Sollten die Batterien im eingeschalteten Zustand entnommen werden oder verbleiben die Batterien bis zur völligen Entladung im Gerät, müssen Uhrzeit und Datum neu eingegeben werden. Andere Einstellungen sowie die gespeicherten Messwerte bleiben auch ohne Batterien erhalten. Zum Einlegen der Batterien lösen Sie die beiden Schrauben des Deckels auf der Geräterückseite und öffnen das Batteriefach (Bild 8). Bitte achten Sie beim Einlegen der Batterien auf die im Gehäuse eingeprägte Polarität.

Bild 8: Batteriefach

Wichtig:

- Verwenden Sie immer drei Batterien gleichen Typs und Herstellungsdatums.
- Entfernen Sie alte Batterien aus dem Gerät und entnehmen Sie die Batterien auch bei längerer Nichtbenutzung. Anderenfalls kann auslaufende Batteriesäure schwerwiegende Schäden im Gerät verursachen.

Bitte nutzen Sie Ihr örtliches Sammel- oder Verwertungssystem zur Entsorgung von Batterien. Batterien gehören nicht in den Hausmüll.

4.2. Ein- und Ausschalten

Durch kurzes Drücken der Taste ON-OFF schalten Sie das Gerät ein. Für drei Sekunden zeigt das Gerät einen Startbildschirm (Bild 9).

Bild 9: Startbildschirm

Dieser enthält die Hardwareversion (drei Ziffern vor dem Punkt) und nachfolgend die Firmwareversion. Darunter sehen Sie die Seriennummer entsprechend dem Typenschild. Weiterhin werden Monat und Jahr der letzten Kalibrierung (vgl. Abschnitt 9) sowie die Größe des Speichers angezeigt.

Durch nochmaliges Drücken schaltet sich das PCE-VM 25 wieder aus. Darüber hinaus besitzt das Gerät eine automatische Selbstabschaltung zum Schonen der Batterien (vgl. Kapitel 4.4).

4.3. Batterieanzeige und Batterietyp

Das PCE-VM 25 hat in der linken oberen Ecke des Displays eine feinstufige Batterieanzeige (Bild 10). Ein grün gefülltes Batteriesymbol entspricht der vollen Batteriespannung.

Bild 11: Batterietyp wählen

Während nicht aufladbare Batterien eine Zellenspannung von 1,5 V haben, liefern NiMH-Akkumulatoren nur 1,2 V je Zelle. Die Batterieanzeige des PCE-VM 25 lässt sich auf beide Spannungen einstellen. Öffnen Sie das Hauptmenü, indem Sie F3 drücken und wechseln Sie durch mehrfaches Drücken der Taste ▼ zum Menüpunkt "Geräteeinstellungen" und drücken OK. In diesem Untermenü wählen Sie auf gleiche Weise "Batterietyp" (Bild 11) und wechseln mit ▼ zwischen "Alkaline" (nicht aufladbar, 1,5 V) oder "NiMH Akku" (aufladbar, 1,2 V). Bestätigen Sie Ihre Auswahl mit OK und verlassen Sie das Menü durch mehrfaches Drücken von F3.

Fällt die Versorgungsspannung unter 3,3 V bei Alkaline-Batterien bzw. unter 3 V bei Akkumulatoren, wird die Batterieanzeige rot. Bis zu einer Versorgungsspannung von 2,8 V kann unter Einhaltung der Gerätespezifikation weiter gemessen werden. An diesem Punkt ist die Balkenanzeige völlig leer und das Gerät schaltet sich automatisch ab.

Ist das PCE-VM 25 mit einen USB-Anschluss verbunden, wird es von der USB-Spannung des PCs versorgt, um die Batterien zu schonen. In diesem Fall wird statt der Batterieanzeige "Extern" ausgegeben.

4.4. Selbstabschaltung

Zur Verlängerung der Batteriebetriebsdauer hat das PCE-VM 25 eine automatische Abschaltfunktion. Zur Einstellung der Abschaltzeit öffnen Sie das Hauptmenü mit der Taste F3. Wechseln Sie mit \mathbf{V} und OK ins Untermenü "Geräteeinstellungen" und dort zum Menüpunkt "Selbstabschaltung", Mit $\mathbf{V} \mathbf{A}$ können Sie zwischen den Abschaltzeiten 1, 5, 15 und 60 Minuten wählen oder die Selbstabschaltung deaktivieren ("keine"). Die Abschaltzeit wird ab dem letzten Tastendruck gemessen. Wird eine Taste gedrückt, verlängert sich die Zeit bis zur Abschaltung wieder um den gewählten Betrag.

Bild 12: Abschaltzeit

5. Vorbereitung von Messpunkten

5.1. Allgemeines zur Auswahl von Messpunkten

Für die Überwachung des Maschinenzustands ist es wichtig, die Messungen immer wieder unter gleichen Betriebsbedingungen am gleichen Punkt auszuführen. Dafür ist die Auswahl geeigneter Messpunkte entscheidend.

Falls möglich, sollte Fachpersonal mit Erfahrungen in der Maschinenüberwachung herangezogen werden.

Generell ist es ratsam, Maschinenschwingungen nah an ihrer Quelle zu erfassen, um Verfälschungen des Messsignals durch übertragende Teile gering zu halten. Geeignete Messpunkte sind starre Bauteile, z.B. Lager- oder Getriebegehäuse.

Ungeeignet für die Schwingungsmessung sind leichte oder mechanisch nachgiebige Maschinenteile, wie Bleche und Verkleidungen.

5.2. Empfehlungen nach DIN/ISO 10816-1

Die Norm DIN/ISO 10816-1 empfiehlt für die Messung von Maschinenschwingungen Lagergehäuse oder deren unmittelbare Umgebung als bevorzugte Messpunkte (Bilder 13, 14, 15 und 16).

Für Überwachungszwecke reicht es oft aus, nur in vertikaler oder nur in horizontaler Richtung zu messen. Bei Maschinen mit horizontalen Wellen und starrer Aufstellung treten die größten Schwingamplituden meist horizontal auf. Bei nachgiebiger Aufstellung können auch starke Vertikalkomponenten entstehen.

Für Abnahmeprüfungen sind an allen Lagerstellen in Lagermitte Messwerte in den drei Raumrichtungen (vertikal, horizontal und axial) aufzunehmen.

Die nachfolgenden Abbildungen zeigen einige Beispiele für die Auswahl geeigneter Messstellen.

Empfehlungen zu Messpunkten an verschiedenen Maschinentypen gibt auch die Norm DIN ISO 13373-1.

Bild 13: Messorte an Stehlagern

Bild 14: Messorte an Flanschlagern

Bild 15: Messorte an Elektromotoren

Bild 16: Messorte an Maschinen mit vertikalem Rotor

5.3. VMID-Messpunkte

5.3.1. Funktionsweise der VMID-Messpunkte

Das PCE-VM 25 ist mit einer elektronischen Messstellenerkennung ausgestattet. REG" Koutwo gpu'bietet dazu Messpunkte vom Typ VMID aus magnetischem Edelstahl an, die einen "eingebauten Speicher mit einer individuellen Seriennummer besitzen (Bild 17).

Bild 17: VMID-Messpunkt

Die im Messpunkt gespeicherte Seriennummer ist eine sich nicht wiederholende 16stellige Hexadezimalzahl, z.B. "000000FBC52B".

Damit lässt sich jeder Messwert einfach und zuverlässig einem bestimmten Messpunkt zuordnen.

Die Kontaktgabe zum Auslesen der Seriennummer erfolgt über den Magnetfuß des Sensors.

Die maximal zulässige Betriebstemperatur für VMID beträgt 80 °C.

5.3.2. Montage der VMID-Messpunkte

Ein VMID-Messpunkt wird mittels Zweikomponentenkleber auf der Maschine befestigt. REG'Koutwo gpu empfiehlt für eine zuverlässige Schwingungsübertragung folgende Kleber:

- LOCTITE Hysol 3430 ohne Füllstoff für ebene Flächen
- LOCTITE Hysol 3450 mit Füllstoff für gekrümmte Flächen

Vor dem Aufbringen des Klebers sollten beide Kontaktflächen gründlich entfettet werden. Der Kleber kann aus der Doppelkartusche direkt auf der gewählten Montagefläche angerührt werden. In ca. 5 Minuten bindet der Kleber ab und nach 15 Minuten kann die erste Messung erfolgen.

6. Messung

6.1. Messwertanzeige

Am oberen Rand der Anzeige (Bild 18) sehen Sie links den Batteriezustand. Daneben werden Uhrzeit und Datum angezeigt.

Bild 18: Messwertanzeige

Unter der Messgröße (z.B. a 3Hz-1kHz Effektivwert) sehen Sie den momentan gemessenen Wert.

Die Ausgabe "Keine ID" zeigt an, dass keine Messstellennummer erkannt wurde.

Hinweis: Der Dezimalpunkt kann in Abhängigkeit vom Messwert an zwei Positionen stehen. Grund dafür ist die automatische Verstärkungsumschaltung. Dadurch wird sichergestellt, dass auch kleinere Messwerte mit hoher Auflösung dargestellt werden.

6.2. Wahl der Anzeigegröße

Mit den Tasten ◀► wählen Sie zwischen den 8 vorhandenen Betriebsarten:

- Schwinggeschwindigkeit 10 Hz 1 kHz
- Schwinggeschwindigkeit 2 Hz 300 Hz
- Schwingbeschleunigung 0,2 Hz 10 kHz
- Schwingbeschleunigung 3 Hz 1 kHz
- Schwingbeschleunigung 1 kHz 10 kHz
- Schwingweg 5 Hz 200 Hz
- Drehzahl und Temperatur
- K(t)-Wert zur Wälzlagerüberwachung

Mit der Taste F2 schalten Sie bei Beschleunigung, Geschwindigkeit und Weg zwischen Effektivwert, Spitzenwert und Scheitelfaktor um.

Der Effektivwert ist der so genannte "echte" Effektivwert" (true RMS).

Der Spitzenwert, auch Scheitelwert oder Betragsmaximalwert genannt, ist der größte Betrag der Schwingung während des vorhergehenden Anzeigeintervalls.

Der Scheitelfaktor, auch Crest-Faktor genannt, ist das Verhältnis von Scheitelwert zu Effektivwert. Er dient zur Beschreibung der Kurvenform. Für ein sinusförmiges Signal beträgt er $\sqrt{2} = 1,41$. Je impulshaltiger das Signal, desto höher der Scheitelfaktor.

Hinweis: Beim Speichern von Messwerten (Kapitel 6.4) werden immer Effektivund Spitzenwert übernommen, unabhängig davon, ob gerade Effektivwert, Spitzenwert oder Scheitelwert angezeigt werden.

Befindet sich der Sensor auf einem VMID-Messpunkt, der bereits im PCE-VM 25 gespeichert ist, wird beim Wechsel der Messgröße eine Warnung ausgegeben (Bild 19), um ein versehentliches Umschalten zu verhindern. Durch Drücken von OK können Sie den Messbereich dennoch wechseln. Die Warnung erscheint bis zum nächsten Messpunktwechsel nicht wieder.

Bild 19: Warnung beim Wechsel der Messgröße

6.3. Messstellenerkennung

6.3.1. Auslesen der VMID-Daten mit dem PCE-VM 25

Die VMID-Messpunkte sind so gestaltet, dass sich der magnetische Sensorfuß darauf selbst zentriert. Zur Vermeidung von Schockbelastung lassen Sie den Sensor jedoch bitte nicht auf den Messpunkt aufschnappen, sondern langsam über den Rand abrollen. Zur Verbesserung der Schwingungsübertragung kann der Messpunkt leicht gefettet werden.

Sobald der Sensorfuß Kontakt zum Messpunkt hat, zeigt das PCE-VM 25 die erkannte Messpunktnummer (ID) an (Bild 20).

Bild 20: Neu erkannte VMID

6.3.2. Eingabe von Messpunkttext

Wenn dem Messpunkt noch kein Text zugeordnet wurde, gelangen Sie durch Drücken der Taste ▼ in das Menü zur Texteingabe (Bilder 20 und 21).

Es stehen zwei Zeilen mit je 10 Zeichen zur Beschreibung des Messpunkts zur Verfügung. Die Eingabe von Zeichen erfolgt über die Tasten $\bigvee \blacktriangle$. Mit $\blacktriangleleft \triangleright$ wechseln Sie die Zeichenposition. Es stehen Großbuchstaben (A bis Z) und Ziffern (0 bis 9) zur Verfügung. Zur zweiten Zeile gelangen Sie durch Drücken von F1. Bei nochmaligem Drücken von F1 können Sie über die Tasten $\bigvee \blacktriangle$ die Betriebsart wählen. Durch Drücken der Taste OK werden die Eingaben übernommen und das Menü verlassen.

Mit F3 verlassen Sie das Menü, ohne Änderungen zu speichern.

Hinweis: Komfortabler können Sie die Eingabe von Messpunkttext mit der zum PCE-VM 25 erhältlichen PC-Software erledigen (vgl. Abschnitt Fehler: Referenz nicht gefunden).

Haben Sie der VMID-Seriennummer einmal ein Text zugeordnet, zeigt das PCE-VM 25 diesen nun stets an, sobald der Sensor Kontakt zum Messpunkt hat (Bild 22).

Bild 22: Anzeige von ID-Text

Außerdem wird das PCE-VM 25 automatisch auf die eingegebene Betriebsart eingestellt. Damit ist gewährleistet, dass immer die gewünschte Messgröße gemessen wird.

Hinweis: Das Ändern von Messpunkttext wirkt sich auch auf die Anzeige von gespeicherten Messwerten aus (vgl. Kapitel 7). In den Messdaten wird immer der aktuell gespeicherte Text zur betreffenden VMID-Seriennummer angezeigt. Ein Ändern der dem Messpunkt zugeordneten Betriebsart wirkt sich hingegen nicht auf bereits gespeicherte Messwerte aus, sondern nur auf danach gespeicherte.

Die Messpunktdaten werden im Gerät gespeichert. Falls mit mehreren Geräten an der gleichen Messstelle gemessen wird, müssen die Messpunktdaten in jedem Gerät gespeichert werden. Die Verwaltung von Messstellen unterstützt auf komfortable Weise die zum PCE-VM 25 erhältliche PC-Software.

6.3.3. Bearbeiten und Löschen von Messpunktdaten

Öffnen Sie mit F3 das Hauptmenü und wählen mit ▼▲ und OK das Untermenü "ID-Datenspeicher".

Im Menüpunkt "ID-Daten bearbeiten" können Sie, wie bereits im Abschnitt 6.3.2 beschrieben, den Messpunkttext und die dem Messpunkt zugewiesene Betriebsart ändern. Im Untermenü "ID editieren" drücken oder halten Sie dazu ▼▲, bis der zu bearbeitende Datensatz angezeigt wird und drücken dann OK zum Bearbeiten.

Im Menüpunkt "ID-Datensatz löschen" können Sie wahlweise einzelne oder sämtliche Messpunktdatensätze, jeweils bestehend aus VMID-Seriennummer, Text und Betriebsart, löschen. Im nachfolgenden Menü "ID löschen" drücken oder halten Sie ▼ ▲, bis der zu löschende Datensatz angezeigt wird, drücken dann OK und bestätigen die Warnung nochmals mit OK (Bild 23).

Bild 23: Löschen eines Messpunktdatensatzes

Ebenso können Sie im "ID-Menü" mit "ID-Speicher löschen" sämtliche Messpunktdaten löschen. Der Speicher des PCE-VM 25 fasst Daten für maximal 1600 Messpunkte.

Hinweis: Das Löschen von Messpunktdaten wirkt sich auch auf die Anzeige gespeicherter Messwerte aus (Kapitel 7). Statt der Messpunkt-Seriennummer und dem Messpunkttext wird dann "keine" angezeigt. Der Messpunktdatensatz kann aber jederzeit neu erstellt werden, wie in 6.3.2 beschrieben.

6.4. Speichern von Messwerten

Durch Drücken der Taste ▼ speichern Sie den angezeigten Messwert. Unabhängig davon, ob Effektivwert, Spitzenwert oder Scheitelfaktor angezeigt werden, speichert das PCE-VM 25 stets den Effektiv- und den Spitzenwert. Weiterhin werden die zugehörige Messpunktnummer (falls erkannt), die aktuell gewählte Betriebsart sowie Datum und Uhrzeit gespeichert.

Hinweis: Wenn sich der Sensor auf einem Messpunkt befindet, dem noch kein Text und keine Betriebsart zugewiesen wurde (vgl. Kapitel 6.3.2), erlaubt die Taste ▼ die Eingabe des Messpunkttexts.

6.5. Grafische Trendanzeige

Das Ziel der Schwingungsmessung nach DIN ISO 10816 oder DIN ISO 13373 besteht darin, anhand von Veränderungen im Schwingungsverhalten einer Maschine Aussagen über deren Betriebszustand zu machen. Dafür ist es unerlässlich, in gewissen Zeitintervallen Messungen an den gleichen Punkten und unter gleichen Bedingungen durchzuführen.

Um dem Bediener vor Ort eine Information über zeitliche Veränderung der Schwinggröße und somit über die Vorgeschichte am betreffenden Messpunkt zu liefern, besitzt das PCE-VM 25 eine grafische Trendanzeige. Voraussetzung für das Abrufen der Trendgrafik ist, dass sich der Sensor auf dem betreffenden VMID befindet. Durch Drücken der Taste F1 erhalten Sie dann die Trendanzeige (Bild 24).

Die Trendanzeige berücksichtigt nur Werte aus dem Messdatenspeicher, welche die zum aktiven VMID gehörende Betriebsart haben. Wurde in den VMID-Einstellungen die Betriebsart geändert (vgl. Kapitel 6.3.3), werden früher gespeicherte Datensätze mit einer anderen Betriebsart nicht in der Trendgrafik angezeigt.

Bild 24: Trendanzeige

Die vertikale Achse stellt den Effektivwert der Schwinggröße dar und die horizontale Achse die Zeit. Bei K(t)-Werten entspricht die vertikale Achse K(t). Beide Achsen sind auf den jeweiligen Maximalwert skaliert. Die Zeitachse zeigt das Intervall zwischen erster und letzter gespeicherter Messung. Unter dem Diagramm sehen Sie einen roten Pfeil bzw. Cursor. Diesen können Sie mit den Tasten \blacktriangleleft horizontal bewegen, um die der Kurve zugrundeliegenden Messwerte auszulesen. Der Cursor springt nur Zeitpunkte an, für die ein gespeicherter Messung sowie der gemessene Effektivwert oder K(t)-Wert angezeigt. Über dem Diagramm wird der zum Messpunkt eingegebene Text ausgegeben. Um eine durchgängige Trendlinie zu erhalten, werden die Punkte mit Geraden verbunden.

Mit der F3-Taste verlassen Sie die Trendanzeige.

Befinden sich im Speicher nur ein oder gar kein Messwert zum gewählten Messpunkt, erscheint statt der Trendgrafik die Fehlermeldung "Zu wenig Daten".

Für Drehzahl- und Temperaturdaten steht keine Trendanzeige zur Verfügung.

Hinweis: Die zum PCE-VM 25 erhältliche PC-Software erlaubt eine komfortablere Trendanzeige, auch ohne Kontakt zum Messpunkt.

6.6. Anzeige von gespeicherten Messwerten

Neben der Ausgabe der Trendgrafik für den aktuellen Messpunkt haben Sie die Möglichkeit, sämtliche gespeicherte Messdaten im Textformat zu betrachten. Öffnen Sie dazu mit F3 das Hauptmenü, wählen Sie das Untermenü "Messdatenspeicher" und dort den Punkt "Messdaten ansehen". Sie können die Messdaten nach den VMID-Seriennummern oder nach dem Speicherdatum geordnet ansehen. Wählen Sie mit $\bigvee \blacktriangle$ den gewünschten Menüpunkt und drücken Sie OK. Nun sehen Sie den ersten Datensatz. Oben wird eine laufende Nummer und die Zahl der Datensätze im Speicher angezeigt. Darunter finden Sie die Messpunkt-Seriennummer und den zugehörigen Text. Unter Datum, Uhrzeit und Betriebsart werden der gespeicherte Effektiv- und Spitzenwert angezeigt (Bild 25).

Mit ▼▲ wechseln Sie zum nächsten Messwert. Mit F1 können Sie den angezeigten Messwert löschen. Mit F3 verlassen Sie das Menü.

Der Speicher des PCE-VM 25 fasst 16000 Messwerte.

Messdaten	Messdaten	Messdaten
Messdaten ansehen Speicher löschen	Nach Datum anzeigen Nach IDs anzeigen	Datens.: 00002/00007 ID: 13925752 ID-Text: KOMPRESSOR HALLE 2 Dat./Zeit: Dat./Zeit: 10.06.12 Filter: 10H2-14H2 Effwert: 010.64
F1: Wählen F2: Abbr.	F1: Wählen F2: Abbr.	F1:Wahl OK:Lösch. F2:Abbr

Bild 25: Ansehen gespeicherter Messwerte

6.7. Löschen gespeicherter Messdaten

Im Menüpunkt "Messdaten" / "Speicher löschen" können Sie sämtliche Messdaten löschen. Nach dem Drücken von OK erfolgt eine Sicherheitsabfrage mit Anzeige der Anzahl gespeicherter Datensätze.

6.8. K(t)-Messung

Die Grundlagen zum Wälzlagerkennwert K(t) finden Sie in Abschnitt 3.5 Wählen Sie zunächst mit den Tasten ◀► die Betriebsart "Wälzlager" (Bild 26).

Bild 26: K(t)-Betriebsart ohne VMID

Die K(t)-Messung ist nur in Verbindung mit einer VMID-Messstellenkennung vorgesehen, da man zur K(t)-Berechnung Start- oder Referenzwerte des Effektivwerts und des Spitzenwerts benötigt, die am neuen Wälzlager gemessen wurden. Diese Startwerte werden im PCE-VM 25 zusammen mit der Messstellenkennung gespeichert. Platzieren Sie den Sensor auf eine VMID-Messstelle am betreffenden Wälzlager. Ist die VMID-Messstellenkennung bisher noch nicht im PCE-VM 25 gespeichert (Bild 27), geben Sie mit der Taste ▼ zunächst den Messstellennamen ein (vgl. Abschnitt 6.3.2).

Bild 27: K(t)-Betriebsart mit neuer VMID

Ist die VMID-Messstellenkennung gespeichert, aber liegen noch keine K(t)-Startwerte vor, müssen Sie diese zunächst speichern. Durch Drücken der Taste ▼ werden der aktuell gemessene Effektivwert RMS(t) und Spitzenwert Peak(t) als K(t)-Startwerte RMS(0) und Peak(0) gespeichert (Bild 28).

Bild 28: Speichern von K(t)-Startwerten

Wird nun der Sensor erneut auf die VMID-Messstelle gesetzt, wechselt das Gerät automatisch zur K(t)-Anzeige, liest die Startwerte aus dem Speicher und berechnet aus den aktuell gemessenen Werten RMS(t) und Peak(t) den K(t)-Wert (Bild 29). Mit der Taste \checkmark können Sie den K(t)-Wert speichern. Mit F1 erhalten Sie eine grafische Trendanzeige (vgl. Abschnitt 6.5).

Hinweis: Sollte das Gerät bei K(t)-Messung ÜBERLAST anzeigen, muss das nicht an einem zu hohen Beschleunigungsmesswert liegen. Ursache kann auch ein Basiswert von Null sein, was zu einer Division durch Null führt.

Bild 29: K(t)-Anzeige

Sie können die gespeicherten K(t)-Startwerte ansehen oder löschen. Öffnen Sie dazu das Menü "K(t)-Basisspeicher" (Bild 30). Im Untermenü "K(t)-Daten ansehen" können Sie mit den Tasten $\bigvee \blacktriangle$ durch die gespeicherten Startwerte scrollen. mit F1 löschen Sie den betreffenden Eintrag. Im Untermenü "K(t)-Daten löschen" können Sie sämtliche gespeicherte K(t)-Startwerte löschen.

Hauptmenü	K(t)-Basis	K(t)-Basis
Mes <mark>sdaten-</mark> speicher	K(t)-Daten ansehen	Datens.: 00001/00003 ID: 19055988
ID-Daten- speicher	K(t)-Daten löschen	UORN Dat./Zeit: 01.01.12 05:0
K(t)-Basis- speicher		Filter: 1kHz-10kHz Effwert:0009.5 m/s ² Spitzenw.: 0013.4 m/s ²
▲♥: Wählen F3: Abbr.	▲V: Wählen F3: Abbr.	≜∜:Wahl F1:Lösch. F3:Abb

Bild 30: K(t)-Startwertmenü

6.9. Frequenzanalyse

Neben der Messung von Effektiv- und Spitzenwerten besitzt das PCE-VM 25 eine einfache Funktion zur Frequenzanalyse. Wechseln Sie dazu mit F3 ins Hauptmenü und wählen den Menüpunkt "Frequenzanalyse" (Bild 31).

Bild 31: Frequenzanalyse

Sie sehen das Spitzenwertspektrum der gerade gemessenen Schwingbeschleunigung oder -geschwindigkeit (Bild 32).

Bild 32: Spektralanzeige

Die vertikale Achse des Diagramms zeigt den Spitzenwert in linearer Teilung und die horizontale Achse die Frequenz. Das Diagramm stellt 125 Linien dar. Den abgebildeten Frequenzbereich können Sie mit F1 halbieren und mit F2 verdoppeln. Folgende Bereiche stehen zur Verfügung: 183, 366, 732 und 1466 sowie bei Beschleunigung auch 2928, 5856 und 11712 Hz. Das linke Ende der Frequenzachse entspricht immer 0 Hz. Die 0 Hz-Linie und bei Geschwindigkeit auch die nächsten beiden Linien werden zur Unterdrückung von Gleichanteilen und tieffrequentem Rauschen nicht dargestellt.

Durch Drücken der Taste ▼ können Sie zwischen dem Beschleunigungs- und dem Geschwindigkeits-Spektrum umschalten.

Zum Ausmessen der Spektrallinien steht ein Cursor zur Verfügung, den Sie mit den Tasten ◀► verschieben. Die rote Pfeilspitze unter dem Diagramm markiert die Cursorposition. Die jeweils vermessene Spektrallinie wird rot eingefärbt. Die zugehörige Frequenz und Amplitude wird unter dem Diagramm ausgegeben.

Für die Skalierung der Amplituden steht eine Autoranging-Funktion zur Verfügung. Bei veränderlichen Signalen kann diese störend sein. In solchen Fällen lässt sich durch wiederholtes Drücken von OK zwischen Autoranging ("Ampl. auto") und fester Amplitudenskalierung ("Ampl. fest") wählen. Bei fester Amplitude wird die zuletzt gewählte Skalierung beibehalten.

Mit F3 verlassen Sie die Spektralansicht.

6.10. Drehzahlmessung

Das VM25 besitzt eine eingebaute Reflexlichtschranke mit unsichtbarem Laser zur berührungslosen Drehzahlmessung. Diese befindet sich im unteren Teil der Geräterückseite (Bild 34).

Zur Drehzahlmessung muss das rotierende Teil mit einem Stück Reflexfolie markiert werden. Selbstklebende Reflexfolien erhalten Sie von Sick zum Beispiel das Material REF-PLUS.

Drücken Sie die Tasten ◀ oder ►, bis Drehzahl und Temperatur angezeigt werden (Bild 33).

Bild : Drehzahl- und Temperaturanzeige

Richten Sie das Gerät auf den Messpunkt aus, ohne dabei den Bereich der Reflexlichtschranke zu verdecken. Als Positionierhilfe hat das VM25 einen Laserpointer, den Sie mit F1 ein- und ausschalten können.

Achtung: Der Laserpointer strahlt mit einer Leistung von < 1 mW bei 650 nm Wellenlänge. Blicken Sie nie in den Lichtstrahl, da dies dauerhafte Sehschäden zur Folge haben kann.

Je nach Größe des reflektierenden Messpunkts kann der Messabstand zwischen 0,3 und 1 m liegen.

Durch Drücken der Taste ▼ können Sie den Messwert speichern. Dem gespeicherten Datensatz wird dabei die VMID-Messpunktnummer zugeordnet, auf der sich der Schwingungsaufnehmer befindet.

Bild 34: Drehzahl- und Temperaursensor, Laserpointer

6.11. Temperaturmessung

Die Temperaturmessung erfolgt gemeinsam mit der Drehzahl (Bild 33). Das PCE-VM 25 enthält einen Infrarot-Temperatursensor im oberen Bereich der Geräterückseite (Bild 34).

Richten Sie zur Messung das Gerät auf den betreffenden Punkt aus. Hierzu können Sie den eingebauten Laserpointer (Taste F1) nutzen. Die besten Messergebnisse erzielen Sie in 10 bis 20 cm Entfernung. Die Richtwirkung des Sensors sehen Sie in Bild 35.

Jeder Infrarot-Temperatursensor weist eine Abhängigkeit vom Emissionsgrad des Messobjekts auf. Das PCE-VM 25 ist für einen Emissionsgrad von 1,0 kalibriert. Bei einigen Materialien, wie zum Beispiel Aluminium, kann es zu Abweichungen kommen.

Bild 35: Richtcharakteristik des Temperatursensors

7. Auswertung der Messungen mit Normwerten

Um aus den gemessenen Schwingwerten Aussagen über den Zustand einer Maschine ableiten zu können, bedarf es einiger Erfahrung. Sollten keine spezifischen Erfahrungswerte vorliegen, kann man in vielen Fällen auf die Empfehlungen der DIN ISO 10816 zurückgreifen. In den Teilen der Norm werden für unterschiedliche Maschinentypen Zonengrenzen der Schwingstärke definiert, die eine grobe Aussage über den Wartungszustand erlauben. Die vier Zonengrenzen charakterisieren die Maschine anhand der Schwingstärke in vier Kategorien:

A: Neuzustand

B: Guter Zustand für uneingeschränkten Dauerbetrieb

C: Verschlechterter Zustand erlaubt nur begrenzten Weiterbetrieb

D: Kritischer Zustand - Gefahr eines Maschinenschadens

Teil 1 der Norm gibt im 2009 erweiterten Anhang allgemeine Zonengrenzen für Maschinen, die in den anderen Teilen der Norm nicht separat behandelt werden.

	45 mm/s			
	28 mm/s			
	18 mm/s			
	14,7 mm/s			Zono
	11,2 mm/s			C/D
0 Hz	9,3 mm/s		Zono	4,5 – 14,7
100(7,1 mm/s		B/C	mm/s
- 0	4,5 mm/s	Zono	1,8 – 9,3	
v _{eff} 1	2,8 mm/s	A/B	mm/s	
-	1,8 mm/s	0,71 – 4,5 mm/s		
	1,12 mm/s	11111/5		
	0,71 mm/s			
	0,45 mm/s			
	0,28 mm/s			
D	Risiko eines Maschinen	schadens		
С	begrenzter Weiterbetrie	b		
В	Dauerbetrieb ohne Eins	chränkung mög	lich	
А	neu in Betrieb genomme	ene Maschinen		

Tabelle 1: Typische Zonengrenzwerte für die Schwingstärke nach DIN ISO 10816-1

In der Norm wird darauf hingewiesen, dass kleine Maschinen, zum Beispiel Elektromotoren mit einer Leistung bis 15 kW, eher an der unteren Zonengrenze liegen, während große Maschinen, zum Beispiel Antriebsaggregate mit flexibler Aufstellung, an der oberen Grenze liegen. Im 2009 überarbeiteten Teil 3 der DIN ISO 10816 finden Sie Zonengrenzen für die Schwingstärke an Maschinen mit einer Leistung von 15 kW bis 50 MW (Tabelle 2).

	Masshipoptyp	Große Maschinen mit 300 kW bis 50 MW Leistung		Mittelgroße Maschinen mit 15 bis 300 kW Leistung	
	мазсинентур	Elektromo Wellenhöhe m	otoren mit en über 315 m	Elektromo Wellenhöhe 160 und	otoren mit en zwischen 315 mm
	Fundament	weich	starr	weich	starr
	> 11 mm/s	D	D	D	D
	> 7,1 mm/s	С	D	D	D
보	> 4,5 mm/s	В	С	С	D
80	> 3,5 mm/s	В	В	В	С
ī	> 2,8 mm/s	А	В	В	С
# 10	> 2,3 mm/s	А	В	В	В
<	> 1,4 mm/s	А	А	А	В
	< 1,4 mm/s	А	А	А	А
		D Risiko ei	nes Maschin	enschadens	
		C begrenzt	er Weiterbet	rieb	
		B Dauerbe	trieb ohne Ei	nschränkung	möglich
		A neu in Be	etrieb genom	mene Masch	inen

Tabelle 2: Klassifizierung der Schwingstärke nach DIN ISO 10816-3

Teil 7 der DIN ISO 10816 beschäftigt sich speziell mit Kreiselpumpen (Tabelle 3).

			Kateg	orie 1		Kate	gorie 2
	Тур	F /	Pumpen i Anforderi Sicherhei verläs	mit hohen ungen an it und Zu- sigkeit		Pumpen f ne und w sche Anv	ür allgemei- eniger kriti- vendungen
	Leistung	<	200 kW	> 200 kW		< 200 kW	> 200 kW
	> 7,6 mm/s		D	D	> 9,5 mm/s	D	D
₽	> 6,5 mm/s		D	С	> 8,5 mm/s	D	С
00	> 5,0 mm/s		С	С	> 6,1 mm/s	С	С
19	> 4,0 mm/s		С	В	> 5,1 mm/s	С	В
9	> 3,5 mm/s		В	В	> 4,2 mm/s	В	В
V _{eff}	> 2,5 mm/s		В	А	> 3,2 mm/s	В	А
	< 2,5 mm/s		А	А	< 3,2 mm/s	А	А
		D	Risiko e	ines Masch	ninenschader	าร	
		С	begrenz	ter Weiterb	etrieb		
		B Dauerbetrieb im zulässigen Arbeitsbereich ohne Ein- schränkung möglich			ne Ein-		
		А	neu in B beitsber	etrieb genor eich	nmene Pump	en im bevorz	zugten Ar-

Tabelle 3: Klassifizierung der Schwingstärke an Kreiselpumpen nach DIN ISO 10816-7

8. Einstellung von Datum und Uhrzeit

Für die Messwertspeicherung ist eine Zeitinformation wichtig. Zur Einstellung von Uhrzeit und Datum öffnen Sie das Hauptmenü, indem Sie F3 drücken. Dort wechseln Sie mit ▼ zum Menüpunkt "Geräteeinstellungen" und drücken OK. In diesem Untermenü wählen Sie "Zeit und Datum".

Mit \blacktriangle können Sie dort den gewählten Wert einstellen. Nach dem Maximalwert, z.B. bei der Stunde 23, beginnt die Zählung wieder von vorn. Mit \blacktriangleleft wählen Sie zwischen Stunde, Minute, Monat, Tag und Jahr. Weiterhin besteht die Möglichkeit, einen Gangfehler der Uhr zu korrigieren. Dies geschieht mit dem Einstellwert bei "Cal." in ppm (parts per million, bzw. Millionstel). Der Uhrentakt lässt sich mit positiven Werten erhöhen und mit negativen Werten verringern. Der Vorzeichenumschlag erfolgt bei +254 ppm.

Bild 36: Uhrzeit und Datum

Beispiel: Die Uhr geht am Tag 5 Sekunden vor. Ein Tag hat 24 * 60 * 60 = 86400 Sekunden. Die Abweichung beträgt 5 s / 86400 s = $58 * 10^{-6} = 58$ ppm. Der einzustellende Wert ist -58 ppm.

Sie verlassen das Menü durch OK und nachfolgend mehrfaches Drücken von F2.

Hinweis: Das Datum berücksichtigt die Schaltjahrregelung. Es ist allerdings darauf zu achten, dass keine ungültigen Tag-Monats-Kombinationen eingegeben werden.

9. Kalibrierung

Das PCE-VM 25 wird mit einer Werkskalibrierung ausgeliefert, welche auf ein Referenznormal der Physikalisch-Technischen Bundesanstalt rückführbar ist. Die Kalibrierung gilt nur in Verbindung mit einem bestimmten Schwingungsaufnehmer. Die Seriennummern von Gerät und Aufnehmer sind auf dem Kalibrierschein vermerkt. Monat und Jahr der Werkskalibrierung werden beim Start angezeigt (vgl. Bild 9 auf Seite 11).

Der bei der Kalibrierung einzustellende Wert ist die Sensorempfindlichkeit in $mV/ms^{\text{-}2}.$

Bild 37: Sensorempfindlichkeit

Diesen können Sie im Kalibriermenü einsehen. Öffnen Sie dazu das Hauptmenü, indem Sie F3 drücken. Dort wechseln Sie durch mehrfaches Drücken von ▼ zum Menüpunkt "Sensorkalibrierung" und drücken OK. In diesem Untermenü wählen Sie "Empfindl. eingeben". Der angezeigte Wert ist die kalibrierte Sensorempfindlichkeit (Bild 37). Er darf nicht verstellt werden, ohne dass eine Neukalibrierung durchgeführt wird. Mit OK und danach mehrfachem Drücken von F3 verlassen Sie das Menü.

Neben der Werkskalibrierung ist eine Überprüfung bzw. Nachkalibrierung durch den Anwender möglich. Dazu ist ein Schwingungskalibrator erforderlich. REG'Kput0 bietet die Geräte VC20 und VC21 an (Bild 38). Diese erzeugen eine oder mehrere Schwingamplituden und -frequenzen mit definierter Genauigkeit. Für die Kalibrierung des PCE-VM 25 genügt eine Beschleunigung von 10 m/s² bei 159,2 Hz (Kreisfrequenz 1000 s⁻¹).

Bild 38: Schwingungskalibrator VC20

Zur Kalibrierung öffnen Sie wieder das Menü "Kalibrierung" und wählen "Schwing.--kalibrator". Sie werden aufgefordert, den Sensor auf den Schwingungserreger zu montieren (Bild 39). Dies geschieht durch den Magnetfuß. Drücken Sie OK.

Bild 39: Kalibriermenü

Das PCE-VM 25 erwartet nun das Referenz-Schwingsignal. Es zeigt die gemessene Beschleunigung an (Bild 40).

Bild 40: Kalibrierung

Mit den Tasten \blacktriangle erhöhen bzw. verringern Sie den angezeigten Wert, bis er 10,00 m/s² beträgt. Speichern Sie die Einstellung mit OK und verlassen Sie das Menü. Das Gerät ist nun durch Anpassung der Sensorempfindlichkeit kalibriert worden. Überprüfen Sie die Kalibrierung in der Messwertanzeige. Eine Schwingbeschleunigung von 10,00 m/s² bei 159,2 Hz entspricht einer Schwinggeschwindigkeit von 10,00 m/s.

10. Sensorkontrolle

Der Eingang des PCE-VM 25 ist für Low-Power-IEPE-Beschleunigungsaufnehmer ausgelegt. Diese Sensoren werden mit einem Konstantstrom versorgt, wobei sich über dem Sensorausgang ein Gleichspannungspotenzial einstellt. Mit Hilfe dieser Gleichspannung lässt sich auch eine Aussage über den Betriebszustand des Sensors treffen. Das PCE-VM 25 wertet drei Betriebszustände aus:

< 0,1 V:	Kurzschluss
0,1 – 11 V:	in Ordnung

>11 V: Leerlauf, z.B. Kabelbruch

Bei Kurzschluss oder Leerlauf zeigt das Gerät statt des Messwerts "SENSOR ER-ROR" an (außer bei Drehzahl- / Temperaturmessung).

11. Kopfhöreranschluss

Einige Wartungstechniker verfügen über Erfahrungen in der akustischen Beurteilung des Körperschalls von Maschinen. Für diesen Zweck besitzt das PCE-VM 25 einen Kopfhöreranschluss an der Buchse, die auch für die USB-Verbindung genutzt wird. Für den Anschluss eines Standard-Kopfhörers mit 3,5 mm-Stecker an diese 8-polige Buchse wird das Kabel VM2x-HP mitgeliefert (Bild 41).

Bild 41: Kopfhörerkabel VM2x-HP

Zur Verwendung des Kopfhöreranschlusses öffnen Sie mit F3 das Hauptmenü und wählen "Kopfhörerausgang". In dieser Betriebsart können Sie mit den Tasten ◀► die Lautstärke einstellen. Mit F3 beenden Sie den Kopfhörerbetrieb (Bild 42).

Bild 42: Lautstärkeregelung

Achtung: Insbesondere beim Bewegen des Sensors können erhebliche Lautstärkepegel auftreten, die unter Umständen zu Hörschädigungen führen. Reduzieren Sie daher immer die Lautstärke oder setzen Sie den Kopfhörer ab, bevor Sie den Schwingungsaufnehmer platzieren.

12. Reset-Taste

Sollte das VM25 einmal nicht auf Tastendruck reagieren, können Sie es durch Drücken der Reset-Taste neu starten. Die Reset-Taste erreichen Sie mit einem dünnen Gegenstand durch eine Öffnung neben dem Typenschild (Bild 43).

Bild 43: Reset-Taste

Gespeicherte Daten und Einstellungen gehen dabei nicht verloren.

13. Verbindung mit dem PC

Das VM25 besitzt eine USB-Schnittstelle. Zum Anschluss an den PC dient das Kabel VM2x-USB (Bild 44), das in die 8-polige Buchse am VM25 gesteckt wird. Schalten Sie dazu das Gerät zunächst aus.

Bild 44: USB-Kabel VM2x-USB

Stecken Sie das andere Ende in ein USB-Port des PCs und schalten Sie das VM25 wieder ein. Wenn es zum ersten Mal mit diesem PC verbunden ist, werden Sie zur Installation des Treibers aufgefordert. Die erforderliche Treiberdatei "MMF_CD.inf" finden Sie auf der mitgelieferten CD oder auf der Internetseite von PCE Instruments.

Firmware-Update

Die Gerätesoftware (Firmware) kann über die USB-Schnittstelle aktualisiert werden. Prüfen Sie zunächst, ob eine aktuellere als die bereits installierte Firmware verfügbar ist. Dazu öffnen Sie bitte die Software-Download-Seite von uns.

Dort sehen Sie die letzte verfügbare Firmwareversion. Die Versionsnummer besteht aus drei Stellen für die Hardware und drei Stellen für die Software (hhh.sss). Für die Firmware sind nur die letzten drei Stellen relevant.

Die in Ihrem Gerät installierte Version wird auf dem Startbildschirm angezeigt.

Bild 45: Firmwareversion

Ist eine Firmware mit höherer Versionsnummer auf der Webseite verfügbar, gehen Sie wie folgt vor:

- 1. Laden Sie das Firmwarefile vm2x.hex von oben genannter Internet-Adresse herunter.
- Laden Sie von der oben genannten Internet-Adresse auch das Programm "Firmware Updater" herunter, installieren Sie dieses auf Ihrem PC.
- 3. Verbinden Sie das PCE-VM 25 über das USB-Kabel mit dem PC und schalten Sie es ein, so dass der PC es als USB-Gerät erkennt.
- 4. Starten Sie "Firmware Updater", wählen Sie den Gerätetyp "VM2x" und stellen Sie das virtuelle COM-Port ein, welches das PCE-VM 25 mit seiner USB-Schnittstelle belegt. Sollten Sie sich nicht sicher sein, welches der angebotenen COM-Ports das richtige ist, können Sie dies in der Windows-Systemsteuerung im Gerätemanager überprüfen.

/14/28	- Firmwaredatei und	Sende	via	COMS	zun	NM2

Bild 46: Firmware Updater

- 5. Klicken Sie auf "Lade" im "Firmware Updater" und geben Sie den Pfad zum Download-Ordner an, in dem sich das heruntergeladene Firmwarefile vm2x.hex befindet.
- 6. Wählen Sie am VM2 im Menü "Geräteeinstellungen" den Punkt "Firmware-Update" und bestätigen Sie die Warnung und den nachfolgenden Hinweis durch Drücken von OK. Damit ist die alte Firmware gelöscht. Das PCE-VM 25 zeigt nun an, dass es auf neue Firmwaredaten von der USB-Schnittstelle wartet (Bild 47).

Bild 47: Firmware-Update

7. Klicken Sie auf "Sende" in "Firmware-Updater". Die Übertragung der Firmwaredaten beginnt. Der Übertragungsfortschritt wird als Zeitbalken am PC und am PCE-VM 25 angezeigt. Nach Beendigung des Updates startet das PCE-VM 25 und "Firmware-Updater" wird geschlossen. Bitte unterbrechen Sie den Updatevorgang nicht. Nach Übertragungsfehlern können Sie das Update bei Punkt 3 erneut starten.

14. Technische Daten

Anzeigegrößen	echter Effektivwert, Spitzenwert (Scheitelwert) und Scheitelfaktor (Crest-Faktor) von Schwingbeschleunigung, -geschwindigkeit und -weg K(t)-Wälzlagerkennwert Drehzahl Temperatur
Messbereiche bei spezifizierte Messgenauigkeit	Beschleunigung: $0,1 - 240 \text{ m/s}^2$ Geschwindigkeit: $0,1 - 1000 \text{ mm/s}$; > 40 Hz frequenzabh. Weg: $0,01 - 60 \text{ mm}$; > 10 Hz frequenzabhängig
Anzeigeauflösung	Beschleunigung: 0,01 m/s ² Geschwindigkeit: 0,1 mm/s Weg: 0,001 m1 - m Temperatur: 1 °C Drehzahl: 1 min ⁻¹
Messgenauigkeit (Schwingung)	$\pm 5\% \pm 2$ Digits
Frequenzbereiche	Beschleunigung: $0,2 \text{ Hz} - 10 \text{ kHz}$ Beschleunigung: $3 \text{ Hz} - 1 \text{ kHz}$ Beschleunigung: $1 \text{ kHz} - 10 \text{ kHz}$ Geschwindigkeit: $10 - 1000 \text{ Hz}$, Geschwindigkeit: $2 \text{ Hz} - 300 \text{ Hz}$ Weg: $5 \text{ Hz} - 200 \text{ Hz}$ Butterworth-Filter 3. Ordnung
Übersteuerungsanzeige	bei > 200 m/s ² Schwingbeschleunigung am Sensor oder >1000 mm/s bzw. >60 mm hinter den Integratoren
Frequenzanalyse	125 Linien Spitzenwert der Schwingbeschleunigung oder -geschwindigkeit Frequenzbereiche: 183, 366, 732, 1466, 2928, 5856, 11712 Hz Tiefste Frequenz: 2 Hz bei Beschleunigung, 5 Hz bei Geschwindigkeit Aktualisierungsrate: 1/s Fenstertvp: Hamming
Messwertspeicher	Flash, 16000 Datensätze
Sensoreingang	Low-Power-IEPE, 2 mA / 12 V, Buchse Binder 711, 3-polig
Analog-/Digital-Wandler	24 Bit
Drehzahlsensor	1 – 9999 U/min Messabstand: 0,3 1 m, Laser-Reflexlichtschranke, unempfindlich gegen Umgebungslicht

Temperatursensor	Infrarot, -40 125 °C, ± 2 K
Laserpointer	< 1 mW, 650 nm (Klasse 2)
Display	OLED, farbig, 128 x 160 Punkte
USB-Schnittstelle	USB 2.0, Full-Speed, CDC-Modus, über Kabel VM2x-USB
Batterien	3 Zellen Typ AAA Alkaline (LR03) oder NiMH-Akkus (HR03)
Batteriebetriebsdauer	7 – 11 Stunden, je nach Batteriekapazität
Selbstabschaltung	1 / 5 / 15 / 60 min oder aus
Menüsprachen	Deutsch / Englisch / Französisch / Spanisch
Betriebstemperaturbereich	- 20 – 60 °C
Abmessungen	125 mm x 65 mm x 27 mm
Masse	140 g (mit Batterien, ohne Sensor)
Schwingungsaufnehmer:	
Тур	KS82L
Messprinzip	piezoelektrischer Scher-Beschleunigungsaufnehmer
Ausgang	Low-Power IEPE
Nennempfindlichkeit	3,5 mV/ms ⁻² (typisch)
Querempfindlichkeit	< 5 %
Betriebstemperaturbereich	-20 – 80 °C
Abmessungen	$\emptyset = 21 \text{ mm}, h = 34 \text{ mm}$
Masse	53 g
Sensorkabel	Spiralkabel, ausgezogene Länge 1,60 m
Messstellenerkennung:	
Prinzip	digital in VMID-Messpunkt, Auslesen über Sensorfuß
Kodierung	16-stellige Hexadezimalzahl, nicht wiederholend
Messstellenspeicher (PCE-VM 25)	1600 Messstellen mit Seriennummer und Text
Befestigung der VMID	Kleben mit Zweikomponentenkleber, z.B. LOCTITE Hysol 3430 oder 3450
Maximaltemperatur	80 °C

Garantie

PCE Instruments gewährt auf dieses Produkt eine Herstellergarantie von 24 Monaten.

Die Garantiezeit beginnt mit dem Rechnungsdatum. Die Rechnung ist aufzubewahren und im Garantiefall vorzulegen. Die Garantiezeit endet nach Ablauf von 24 Monaten nach dem Kauf, unabhängig davon, ob bereits Garantieleistungen erbracht wurden.

Durch die Garantie wird gewährleistet, dass das Gerät frei von Fabrikations- und Materialfehlern ist, die die Funktion entsprechend der Bedienungsanleitung beeinträchtigen.

Garantieansprüche entfallen bei unsachgemäßer Behandlung, insbesondere Nichtbeachtung der Bedienungsanleitung, Betrieb außerhalb der Spezifikation und Eingriffen durch nicht autorisierte Personen.

Die Garantie wird geleistet, indem nach Entscheidung durch PCE Instruments einzelne Teile oder das Gerät ausgetauscht werden.

Die Kosten für die Versendung des Gerätes an PCE Instruments trägt der Erwerber. Die Kosten für die Rücksendung trägt PCE Instruments.

KONFORMITÄTSERKLÄRUNG

PCE Deutschland GmbH

Im Langel 4 59872 Meschede Tel: +49 (0) 2903 / 976 99 0 Fax: +49 (0) 2903 / 976 99 29

E-Mail: info@warensortiment.de

Internet: http://www.warensortiment.de

- EC-Konformitätserklärung
- EC- Dichiarazione di conformitá
- EC- Déclaration de conformité
- EC- Conformiteit-verklaring
- EC- Declaração de conformidade
- EC- Prohlášení o shode

- EC- Declaración de conformidad
- EC- Declaration of conformity
- EC- Uygunluk Beyanı
- ЕС-Заявление о соответствии
- EC- Deklaracja zgodności

D	Konformitätserklärung	Wir erklären hiermit, dass das Produkt, auf das sich diese Erklärung bezieht, mit den nachstehenden Normen übereinstimmt.
E	Declaración de conformidad	Manifestamos en la presente que el producto al que se refiere esta declaración está de acuerdo con las normas siguientes.
I	Dichiarazione di conformitá	Dichiariamo con ciò che il prodotto al quale la presente dichiarazione si riferi-sce è conforme alle norme di seguito citate.
GB	Declaration of conformity	We hereby declare that the product to which this declaration refers conforms with the following standards.
F	Déclaration de conformité	Nous déclarons avec cela responsabilité que le produit, auquel se rapporte la présente déclaration, est conforme aux normes citées ci-après.
TR	Uygunluk Beyanı	Bu bildirime bağlı ürünün aşağıdaki standartlara uygun olduğunu beyan ederiz.
NL	Conformiteit-verklaring	Wij verklaren hiermede dat het product, waarop deze verklaring betrekking heeft, met de hierna vermelde normen overeenstemt.
RUS	Заявление о соответствии	Мы заявляем, что продукт, к которому относится данная декларация, соответствует перечисленным ниже нормам.
Р	Declaração de conformidade	Declaramos por meio da presente que o produto no qual se refere esta declaração, corresponde às normas seguintes.
PL	Deklaracja zgodności	Niniejszym oświadczamy, że produkt, którego niniejsze oświadczenie dotyczy, jest zgodny z poniższymi normami.
CZ	Prohlášení o shode	Tímto prohlašujeme, že výrobek, kterého se toto prohlášení týká, je v souladu s níže uvedenými normami.

Schwingungsmessgerät:

PCE-VM 25

Mark applied	EU Directive	Standards
CE	2004/108/EC	DIN EN 61010-1:2002 (Sicherheitsbestimmungen) DIN EN 61326-1:2006 (EMV-Anforderungen)

Meschede, 22. März 2012

PCE Deutschland GmbH Im Langel 4, 59872 Meschede 02903/976990, Fax: 02903/9769929 info@warensortiment.de www.warensortiment.de

Ort und Datum